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INTRODUCTION

Boundary element methods (BEN) have become an accepted alternative

to domain-based methods (finite element and finite difference) for many

classes of boundary value problems. The direct and indirect BEN

formulations are two reasonably established formulations that are used

to solve a variety of boundary value problems in engineering. These

methods require only the boundary to be subdivided and are inherently

suitable when modeling infinite domains. Since the methods are

relatively new, they have not been as extensively developed as domain

methods for nonlinear applications. They also lack the generality (in

0terms of extensive continuum and structural element libraries) that

commercial finite element method (FEM) computer programs possess.

Considering the individual strengths of domain- and boundary-based

methods, some classes of problems (e.g., nonlinear soil-structure inter-

action) may be most effectively solved by combining the methods.

Objective

The ultimate objective of this research is to determine whether or

not the boundary element and finite element solution methods can be

combined with advantage towards economical solutions of nonlinear struc-

tural/geotechnical problems. However, our imediate emphasis is on

,t improving the accuracy of the indirect boundary element method. The

accuracy of a quadratic isoparametric boundary element with a new

adaptive integration technique is evaluated.

Background

An early application of the direct method for elasticity is given

by Cruse and Rizzo (Ref 1). In this formulation Betti's theorem is used

to transform a volume integral to a surface integral. The unknown

-- ,



boundary values for traction and displacements are solved for directly

in the system of equations. Internal responses (stresses, strains, or

displacements) are obtained as integrals of the tractions and displace-

ments on the boundary of the domain.

An early application of the indirect method for elasticity is given

by Hassonnet (Ref 2). In the indirect formulation the actual boundary

value problem is replaced by an auxiliary problem in the infinite plane

(two-dimensional), and artificial boundary tractions that satisfy the

boundary conditions and the governing differential equations constituting

the actual problem are solved. These artificial tractions are then

integrated to obtain internal and boundary responses of the actual

problem.

Early efforts used analytically integrated elements with constant

or linear interpolation of boundary variables. Lachat and Watson (Ref 3)

incorporated isoparametric element representations typical of the finite

element method (Ref 4). Geometry as well as boundary values could be

interpolated at a consistent order (linear, quadratic, or cubic) over a

given element.

Isoparametric representations prevent closed-form integration over

individual elements and numerical integration is required. These element

integrations represent the main computational effort of the BEM. Thus,

there has been much effort aimed at efficient numerical integration

(Ref 5, 6, and 7). Lachat and Watson (Ref 5) present a variable-order

numerical integration strategy with provisions for element subdivision

when the required order of integration, for a prescribed accuracy,

exceeds that available in the program.

* A Naval Civil Engineering Laboratory (NCEL) study of the BEM (Ref 8)

compared the direct and indirect methods in two dimensional elastostatics
with constant distribution elements. The direct method performed poorly

(as compared to the indirect method) in a region near the boundary but

gave good values on the boundary. This poor performance in the near

boundary region was due to two factors: (1) the direct method computer

code calculated the element integrations with four-point Gauss quadrature

as compared to the indirect method computer code, which contained closedform

* integration formulas; and (2) internal response calculations in the

4 2
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direct method must integrate a function with a higher order singularity.

Based on the performance comparison of that study and the fact that the

indirect method is less formal theoretically and simpler to physically

comprehend, the indirect method was pursued further.

A following study (Ref 9) investigated a preliminary coupling of

the finite element and boundary element methods in two-dimensional

elastostatics. The methods were coupled within the computational frame-

work of the BEM, satisfying compatibility and equilibrium explicitly at

the domain interfaces. Qualitatively the coupling was a success, but

the simple constant elements used for both methods prevented substantial

quantitative evaluation. Coupling the two methods conceptually as two

BEM domains provided a good initial study but was not as applicable to

the long-term goals for application in nonlinear soil-structure interaction

because the approach yielded a system of unsymmetric algebraic equations.

Two areas, therefore, required further investigation: (1) accuracy of

.1x the BEN formulation, and (2) a FEM-BEM coupling within a FEM computational
framework.

Scope

The present study addresses the accuracy of the indirect BEN. The

main focus of the study is a new algorithm based on a recursive subdivision

of boundary elements that improves the accuracy of isoparametric element

integrations in the near-boundary region. Numerical integration error

is studied in the context of the error field near a single boundary

element in an infinite plane. Based on this numerical study, a criterion

for element subdivision is determined as a function of desired accuracy.

The recursive algorithm is presented along with some initial numerical

examples to illustrate its effectiveness. Also included are the refinement

of a variable-order integration formula, which is commonly used in

boundary element work, and an investigation of numerical error that is

characteristic of the indirect BEM near boundary discontinuities.

In addition to numerical integration error, the indirect boundary

element method possesses error that is traceable to its inherent use of

artificial boundary tractions. The actual boundary responses (tractions

3
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or displacements) may have small gradients, while the corresponding

artificial boundary tractions may have very high gradients. Thus, a

boundary subdivision that appears sufficiently adequate for the boundary

response can fail to accurately model the artificial tractions and

thereby result in poor accuracy for internal response calculations.

These errors occur near geometry and traction boundary discontinuities.

One numerical example presented includes a study of this error as well

as the error from numerical integration.

-, The computational aspects of this study were carried out on a

microcomputer. The main incentives for this approach were limitation of

cost and the availability at NCEL of an effective software development

environment (the University of California at San Diego (UCSD) p-System)

and a modern language (UCSD Pascal). Our use of a modern language has

led us to pursue approaches such as the use of recursive constructs that

would not have been considered in a FORTRAN environment. Strongly

data-typed languages such as Pascal can generally provide a good research

envirotuent because of their enhanced data structures, internal documen-

tation, and modularity.

Our recursive algorithm is implemented for the indirect BEN and

with a quadratic isoparametric boundary element. The concepts underlying

the indirect formulation are reviewed in the following section.

INTEGRAL EQUATIONS

The applicable integral equations are given here for reference and

perspective. Detailed accounts of the integral equation development are

given by Banerjee and Butterfield (Ref 10) and Crouch and Starfield

(Ref 11). The equations given in the following section closely follow

those given by Banerjee and Butterfield (Ref 10). Body forces and rigid

body translations ar, omitted for brevity.

Both the direct BEN and indirect BEN are formulated in terms of the

fundamental singular solution, the Kelvin solution for linear, isotropic,

plane strain conditions, which expresses the displacement field u.(x)
• 1

due to a unit force ek( ). The indices i, j, and k assume values of I
#k

4
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or 2, and repeated indices imply summation in what follows. The Cartesian

coordinates x and t represent the field and source points, respectively.

The Kelvin solution is given by

u.(x) = Gk(x,t) ek(V (1a)

where

Gik(x,) =C 6 ik ln r - i k) + Aik (Ib)

C1  8np(l - v)

C2  3-4v

A A arbitrary constant tensor based on zero displacement
reference distance

yi = xi - ti

6ik = Kronecker delta function

2
r =Yi Yi

By incorporating the linear strain-displacement relationship and

Hooke's law, the stress field a. .(x) is given as
13

Sij(x) = T ijk(x,) ek() (2a)

where
(C 3 \C 2yiYJ~k'

T. (xe)+ 6 C+ 2' i (2b)
ijk((r2' "4(6ikYj + ijkYi -ijY k ) + Ir2 I

1 (2c)C3  = 4n(1 - v)

C4  = - 2v (2d)

Equilibrium conditions applied at a boundary point, indicated by a

unit outward normal n.,x), and Equation 2a combine to give the surface1

tractions t.(x) as
1

5
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t.(x) = Fik (X,) e k() (3a)

where

Fik =(-2) [C4 (nkYi - niyk) + 4 6ik + 2 )yn (3b)

Figures I and 2 illustrate the singular behavior of the fundamental

solutions G and Till, respectively, for a point load applied at the

origin of the Cartesian system. The singularity of G is order In(r),

while the singularity of T, obta-ined from derivatives of G, is order

1/r.

Consider the elastostatic boundary value problem shown in Figure 3

for a linear, isotropic, homogeneous domain 0 subjected to the traction

and displacement boundary conditions:

t.(x) = t.(x) on r (4a)

u..(x) = u.(x) on r (4b)1 u

where t.(x) and u.(x) are prescribed distributions of boundary tractions
1 1

and displacements, respectively. The boundary conditions are not mutu-

ally exclusive; any two of the four boundary values are prescribed in a

piecewise continuous manner for a well-posed problem. Boundary values

can be defined in any orthogonal coordinate system and are not necessarily

limited to the global x1x2 system.

When using the indirect BEN, the domain 0 is embedded in an infinite

plane as shown in Figure 3.* Artificial tractions, Pk(t), acting on the
boundary F are sought that satisfy the prescribed boundary conditions.

The artificial tractions can be expressed as a "continuous" distribution

*The plane strain formulation can be converted to the 2lane stress
formulation by specifying an effective Poisson ratio V = v/(1 + v).

* 6



of unknown point loads analogous to ek( ) and related to field variables

by Equations 1 through 3. The displacements and stresses for any point

x due to the artificial tractions are then given by integrals over the

boundary

u.(x) = f Gik (X,') p k (t) d( (5)

a..(x) = f Tijk X,) Pk(t) dt (6)
r

The governing differential equations are satisfied over the entire plane

including the domain (2, since the responses are expressed as a super-

position of the fundamental solution. From Equations 3a aiid 3b the

- tractions acting on a tangent line defined by a normal vector n. are

0 given by

t (x) = f Fik(X,) P() dt (7)

If the field point x is now allowed to approach the boundary F and the'-.1

boundary conditions, Equations 4a and 4b, are enforced, we obtain boundary

integral equations relating the known boundary values in terms of the

unknown artificial boundary tractions as follows,

t. (x) = f F (X,') P(Q) dt on r (8)
1 rik k Ft

u. (x) = f Gik(X,t) Pk(t) dt on F (9)
r u

Equation 8 must be interpreted as a Cauchy principal value integral and
O is thus written as

t (x) =+- 6 Pk(X) + f Fk(X,t) Pk(t) dt on r (10)

assuming a tangent line through x.

7-.. -7

0,,,t.".-..:.



NUMERICAL FORMULATION

Equations 9 and 10 represent an exact boundary integral equation

formulation of the problem of determining artificial tractions. Practical

engineering methods require that the equations be solved numerically.

Two numerical approximations are made:

(1) The boundary integrations are performed in a piecewise manner

over discrete subdivisions of the boundary called boundary

elements. Within each element tractions (real and artificial),

displacements, and geometry are usually interpolated by poly-

nomial functions.

(2) Equations 9 and 10 are satisfied at discrete points within

0 each element by the collocation method. This can be considered

as a weighted residual method with Dirac delta weighting

functions having origins placed at the collocation points,

i.e., points where the equations are exactly satisfied.

The integral equations can thus be approximated by a set of linear,

simultaneous algebraic equations.

First consider the piecewise integration over the boundary. If the

boundary is divided into Q boundary elements, the displacement at a

response point x is given as

Q
* u.(x) = f Gik(Xt) Pk(t) dt (11)

q=1 '6-q

4, In an isoparametric element formulation any field variable y (e.g.,

representing boundary geometry, traction, or displacement) defined on an

element q can be interpolated in terms of nodal values and shape functions

(Ref 5) as follows

* yi = Y N (r) Yi* (12)

8



where a is the node index, M is the number of nodes per element, q is

the normalized (-1 < ) < 1) local curvilinear coordinate, y, are nodal

values of the field variable, and Na (n) are the appropriate polynomial

shape functions for the element. A quadratic element (H=3) is shown in

Figure 4. The shape functions for this element are defined as

1 2N1 0 .q )(3a)

N2  2(1 2 (13b)

N 12 +) (13c)
3 2

By interpolating the distribution of artificial tractions on element q,

* k, with Equation 12, the displacement at point x can be written as*

Q H I
u.(x) = G fG N aJ dq (14)

q=l a=1 1

where Jq is the Jacobian relating the global Cartesian system to the

local curvilinear system r. The Jacobian is given by

2 2 1112

It is a function of n, and its value is an indicator of the geometric

distortion of the qth boundary element. Introduction of the shape

functions allows the unknown nodal values of artificial traction P q to
* ka

be removed from the integrand as constant coefficients of the integral.

An expression for the stress and traction at any point x can be

written in a similar manner as follows

*The superscript q is not to be interpreted as an exponent.

9
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QN 1
a(X) = I y Pq f T . N J qdr1  (16)

ijq~la--Ik -1 ijk a

Q M I
ti(x) =qI Y P a f Fik N a Jq d (17)

1q=1a=1 -1 i

Equations 14 and 17 can be applied at collocation points on the boundary

to obtain an approximate solution to Equations 9 and 10. For isoparametric

elements the number of element collocation points is equal to the number

of nodal points. The collocation points can be positioned at the geometric

node points giving continuous elements, or the points can be positioned

within the element giving discontinuous or nonconforming elements (Ref 12).

The known boundary values are interpolated at the collocation points,S
thus giving a system of algebraic equations in terms of the unknown

tractions Pq After having solved this system for Pq , the displacement
ka ka

and stress response in the domain Q or on the boundary r can be obtained
by applying Equations 14 and 16, respectively.

The element integrations of Equations 14, 16, and 17 constitute the
main computational effort of the indirect boundary element method for

linear elastostatic problems and are the focus of this study.

ELEMENT INTEGRATION

Except when using simple elements, numerical integration is generally

a necessary part of the procedure for calculating the system of equations

'. and internal responses in the BEN. In developing the system of equations,

when the collocation point is on the boundary element to be integrated

the integration must receive special treatment. These integrations over

the singularity are treated in detail by Watson (Ref 13) and by Banerjee

and Butterfield (Ref 10). A combination of analytical and numerical

integration is usually required.

0o
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The element integrations for internal response calculations can

also require special treatment. We will concentrate on the evaluation

of stress because it is associated with a stronger singularity than

displacement (compare Figures 1 and 2). One approach to the integration

is the single application of Gaussian-Legendre numerical integration

(Ref 14). For a given function k(r), its integral is numerically evalu-

ated as

f k(n) d = I A. k() (18)
-1 i=1 1

where Ai and ri are the integration weights and positions (Gauss points),

respectively, for integration order R. In the indirect BEM this represents

the replacement of a continuous traction with a distribution of discrete

forces at positions nI.. The stress field is thus given by the superposition

of singular fields of the type shown in Figure 2 with origin placed at

each integration point ni and with corresponding weight factor A..1

The accuracy of element integrations can be examined experimentally

in the context of a single element in the infinite plane, as shown in

Figure 5. Figure 5 also depicts the response region and view direction

for graphical results presented in Figures 6, 7, and 8. Figures 6a, 7a,

and 8a show the stress (ali) field in the response region using various

orders of numerical integration. Four-point integration is typically

used in codes where the order of integration is not designed to vary.

The singular behavior at the Gauss points is clearly evident. As the

element (which lies along the line x=0) is approached the stress and

thus the error become unbounded near a Gauss point. The error in numerical
integration can be evaluated by comparing the results with those obtained

from an analytically integrated constant element. The a error field

for various orders of integration is shown in Figures 6b, 7b, and 8b. A

positive value indicates an overestimate of the compressiv- stress

magnitude. The error plots are arbitrarily clipped at ±2%. The variation

in weight factors, Ai, for the integration points are reflected in the

variation in the peaks on all the figures. At half an element length or

11
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greater away from the traction, the stress Ol1 for four-point integration

has an error of less than 0.6% (Figure 6b). At this distance the stress

is adequately computed by four-point quadrature. The region closer to

the element is herein referred to as the "error region." The size of

this region is dependent on the acceptable error level. The oscillation

observed in the response has been referred to as the ripple effect in

previous reports (Ref 15 and 8).

There are different approaches to improving the accuracy in the

error region. Some approaches reduce the size of the error region,

while others avoid using the boundary integration to calculate responses

in the error region. Increasing the order of numerical integration

reduces the weight factors A. and the distance between individual Gauss

points, thus reducing the size of the error region. This has been

illustrated in Figures 7 and 8, which give the stress and error fields

using 8- and 16-point numerical integration, respectively. The error

region is sigificantly reduced. Other approaches for reducing the error

region include element subdivision and analytical integration of extracted

portions of the integrand. The element subdivision approach involves

subdividing the element and performing the integrations over smaller

segments of the element. Alternatively, shape functions can be used to

interpolate through the error region (bridge the region), since boundary

values for points exactly on the boundary are obtained accurately.

When accuracy requirements exceed the order of integration that is

available in the program (i.e., when the response point is within the

error region of a given element), one of the previously mentioned remedies

may be used. Interpolation through the error region can give good

0results, but it can also constrain the choice of the element size if the

analyst is also anticipating a need for calculating near-boundary response
points. From the analyst's perspective it would be more appropriate to

base the selection of element size only on considerations of geometry

0 and anticipated response gradients along the boundary. In this regard,

an element subdivision approach is attractive since it obviates the need

for apriori consideration of near-boundary response point calculations

when designing the boundary discretization.

12
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The variation in size of the error region with order of numerical

integration suggests that the order of integration be determined as a

function of normalized distance to the element r; where r is the ratio

of the distance between the field point and the element, r, to the
element length, Ak. Other factors include the element distortion,

traction distribution, and the position of the response point relative

to the element.

In this study the order of integration is adaptively selected for

each combination of element and field point. It is given by a procedure

that includes r and a user-specified error parameter, based on work

originally done by Lachat and Watson (Ref 5). The actual formula used

to select the order of integration (H) is a modification of one given by

Banerjee and Butterfield (Ref 10).

The variation of A given by Banerjee and Butterfield's formula, for

0three different (user-defined) error thresholds, is shown in Figure 9.

For each error threshold the order of integration increases as r decreases

until H unexpectedly decreases very near the element. The decrease in

order near the element is a mistake that can cause less reliability in

the near-boundary region. Some implementations will "key" on H to

determine if element subdivision is necessary; this formula would then

result in no element subdivision where it is needed most. Other strategies

for refining the results in the near-boundary region would not be affected

by the behavior of Banerjee and Butterfield's formula.

A revised version of the formula is given below in a Pascal-like

outline.

0 PROCEDURE ORDERcalc

CONSTANTS
ZEROtolerance:= -2.OE-3;
GAUSSINTmax:= 16;

BEGIN (* the ORDERcalc procedure *)
LNERRORover8:= LN(ERRORparameter/8)
LNLover4R:= LN(LENGTH*0.25/RADIUSmin)
IF LNLover4R>ZEROTOL THEN LNLover4R:= ZEROTOL
ORDER:= ROUND(0.5*ABS(LNERRORover/LNLover4R-1.0)) + 1
IF ORDER>GAUSSINTmax THEN ORDER:= GAUSSINTmax

0 . :. END (* the ORDERcalc procedure *)

13
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The variation of R given by this formula, for three different error

parameters, is shown in Figure 10. The revision gives the formula an

asymptotic behavior as the element is approached. In the research

software developed for this study (Single Element Integration Tester

(SEIT) and BEM Quadratic Element TEST (BQTEST)), the order of integration

could vary from I to 16. The formula merits further investigation.

Though it is a simple formula it can drastically affect the efficiency

and accuracy of the method. The SEIT program could readily be used to

fit a curve to the numerical error data.

Practical limitations to increasing the order of numerical inte-

gration can arise, especially in the context of the direct boundary

element method, where the singularity for stress integrations is more

severe than in the indirect method (1/r versus /r 2).

The element subdivision algorithm developed here recursively sub-

divides the element. It is implemented in an adaptive manner and results

in a concentration of subelements near the response point of interest.

The use of recursion allows a general algorithm that is otherwise difficult

* to implement for curved elements when based on an alternative iterative

4! approach. The adaptive concentration of subelements in the proximity of

*the response point helps minimize the number of integration points. The

following section gives an overview of the algorithm followed by a more

detailed pseudo-code (an outline of an algorithm written in a combination

of English and computer programming language).

RECURSIVE QUADRATIC ELEMENT

Consider the isoparametric quadratic element shown in Figure 11.

Based on experiments illustrated in the previous section a constant

ratio rsub can be established that bounds the element error region as

shown by the dashed line. In our studies, for example, for order 16

integration, responses have less than 0.1% error for values of r > 0.2.

This value is obtained for an element with both a constant traction
distribution and a constant Jacobian. The criterion that the radius

must satisfy to avoid subdivision of the element is given by

14
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r > A2 rsub (19)

Element subdivision must be used to obtain consistent accuracy for

response points inside of this radius.

The radius r can be estimated by calculating the distance to the

nearest node point when the interior response point position, x., is

relatively far from the element (e.g., r > A). When close to the

element the radius r may be considered as a continuous function of the

local coordinate n. The minimum radius to the element can then be

calculated by minimizing the square of the radius with respect to r.*

The closest point on the element is indicated by local coordinate

no in Figure lla and is the focal point for the initial element sub-

division. A "critical" element M cr is centered at x.(0) as shown in

Figure llb with a length of ARcr given by

Atcr() = r (20)

r sub

Assuming a constant Jacobian over the subelement, the length in the

local coordinate is given as

cr(~

ancr AkJcr1(V (21)_ w J(no)

The inaccuracy introduced by the assumption of a constant Jacobian can

be overcome if the user-specified ratio rb is set slightly greater

than the value computed based on this assumption (e.g., 0.3 instead of

. 0.2 in this case). This can result in more subdivision since Akcr will

*The possibility of obtaining two minimum radius values poses no

problem to the recursive procedure.
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be smaller, but the inclusion of variable-order integration will reduce

the order of numerical integration on the individual subelements if the

specified ratio rsub is overly conservative.

The element integrations can now be performed with consistent

accuracy over AF c r with respect to the subelement local coordinate ncr

and subelement shape functions N (ncr). The contribution of subelement

&1c r in element q to the traction t0, for example, at xP is given by
I

M=3 M=3 1
I P 1 I Na  f F N N ( n r ) J dn cr (22)

where N is the value the Oth element shape function at node P of the

subelement. The quadratic element shape functions are thus being

approximated by the quadratic subelement shape functions N In a

similar manner, integrations over the remainder of the element sub-

regions A a andF b shown in Figure llb can be incorporated into the

original element integrations. Expression 22 is the key to subdivision

algorithms, whether they are implemented with iterative or recursive

algorithms.

The minimum radius criterion, Equation 19, is also applied to

subregions Ara and Ab. Subelement AFc r explicitly satisfies the crite-

rion by Equation 20. The remaining element subregions, in general, do

not satisfy the subdivision criterion and must be further subdivided. A

recursive application of the subdivision procedure described above can

then be applied to the remaining element subregions. Figure llc illus-
a* trates this process by subdividing AM . Primes denote one level of

- a
recursion. The closest point on M to the response point is at n' = 1.

Since this is at the end of the subregion, the critical subelement is

not centered on %, and further it is assumed that Ar' in this case isBb

* not needed, (i.e., no further subdivision of Ar-b is required). The
- cr'

critical subelement AFr  can now be integrated and incorporated into

the integrals for the subregion a shape functions using Expression 22.

Assume now that a' satisfies Equation 19 (i.e., no further subdivision

is necessary for ar a). It can then be integrated and incorporated into
athe subelement integrations. With the integrations complete on a,

Expression 22 incorporates contributions into the integration over AF.

16



The integrations over the element Ar using the original element

shape functions have been completed except for the element subregion
bb

Arb . As indicated in Figure lib, the length of Arb is less than that of
Jcr h~ .crr , while the radius r to Ar is greater than that to Ar ; Equation 19

is satisfied. Thus, in this case Arb would require no further subdivision.

Subregion Ar b can be integrated and incorporated into the integrals for

the element shape functions using Expression 22.

In software programing parlance, recursion is the ability of a

function or subroutine to call itself. One strength of a recursive

implementation, as contrasted with an iterative implementation, is that

the element subdivision algorithm can directly deal with the case when

the point n; is internal to Ara (not at an extrema). This case can

occur with curved elements. An iterative implementation of the subdivi-

sion procedure would require significant "bookkeeping" to monitor which

0 portions of the element Ar had been integrated. The recursive approach

also yields compact code. Recursion, though a common feature in "modern

computer languages" such as Pascal, Modula II, and C, is not a standard

feature of FORTRAN. Pascal was the programming language used in this

study.

*: An outline of the recursive element subdivision algorithm, written

in pseudo-code, is given below. In this description in pseudo-code,

Pascal procedure (analogous to a FORTRAN subroutine) calls of the element

are either (1) replaced with a description of the procedure's actions or

(2) explicitly shown with a listing of the procedure after the main

element procedure QUAD. (A procedure call is not prefaced by the CALL

statement as in FORTRAN.) Formal parameters of the procedures are not

. shown in Pascal syntax and are only included if they clarify the recursive

nature of the algorithm. Comments that explain rather than replace code

are enclosed within the delimiters (* and *);

- -PROCEDURE QUAD

(INTEGRATIONS, (* the element integration results *)

A,( element length estimate *)

x) (* array of element nodal coordinates *)

17
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PROCEDURE QUADnons ing

(INTEGRATIONS, (* the element integration results *)

A,(* element length estimate *)

x,( array of nodal coordinates ")

r) (* minimum radius to the field point *)

BEGIN (* the QUADnonsing procedure *)

Calculate the order of numerical integration (h) using the ORDERcalc

procedure previously defined

Intialize the INTEGRATIONS array to zero

FOR i= I TO H (* each integration point *)

BEGIN (* the integration point loop *)

For each of the element integrations (e.g., as in Equation 17)

* add the product of the integrand at the Gauss point with the

Gauss weight to the appropriate INTEGRATIONS array value

END (* the integration point loop *)

* END the QUADnonsing procedure *)

BEGIN (" the QUAD procedure *)

Calculate the minimum radius (r) and the close point (no0

IF r>A2*r (" subdivision criteria of Equation 19 *)

THEN (*the element does NOT need to be subdivided *)

QUADnonsing(INTEGRATIONS,A£,x,r) (* integrate the entire element *)

*_ ELSE (* the element must be subdivided *)

BEGIN

Initialize the INTEGRATIONS values to zero

Determine preliminary values for subelement integrations

0 calculate Al cr by Equation 20

calculate x an array of the critical subelement nodal elements
cr cr crQUADnonsing(INTEGRATIONS , x ,r) (* integrate the critical

subelement *)

18
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Update the element integrations by Expression 22

IF xc r(ncr)*x(nl)( subelement node I does not coincide with

element node 1*)

THEN (* a Ara subelement is necessary *)

BEGIN

Interpolate the coordinates of x a(2)

Estimate the length U a using two-point integration

QUAD(INTEGRATIONS',Aga,xa) (* a recursive call *)

Update the element integrations as Expression 22

END

IF xCr(ncr)*x(n3) (* subelement node 3 does not conincide with

b element node 3*)

THEN (* a AFb subelement is necessary *)

BEGIN

Interpolate the coordinates of x b(2)
bEstimate the length Afb using two-point integration

QUAD(INTEGRATIONSb bxb) ( a recursive call *)

Update the element integrations as Expression 22

END

END (* the element subdivision *)

END (* the QUAD procedure *)

The recursive procedure outlined above applies a variable-order

integration formula at every level of recursion. The effect of the

algorithm is to concentrate integration points on the boundary near the
*-J interior response point xP. In this algorithm integration points further

from xP will increase in weight and spacing. This is consistent with

the idea of variable-order integration applied around the problem boundary

(Ref 5), but here it is applied at the element level.

The maximum order of integration available in the program is used

in the determination of the error region. If the error region were to

have been based on single-point integration, the recursive algorithm

would use a "minimum" number of integration points adaptively positioned

to account for the element distortion. Though the number of integration
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0 - . - -.- . . .. . . . . . .

a...,. ' . - - ' , +, , ' - . " . , ., - . . .. . - - . . - . - . , - .. ,. . - . . .. . . -+ . . . . . . . . . .



- points would be minimized, the number of recursive subdivisions would be

maximized. Efficiency studies comparing these two factors are a future

goal.

Each level of recursion has a corresponding amount of computational

overhead. Subelement lengths and nodal positions, minimum distance r,

integration order AI, and incorporation of the subelement integration

results into the original integrals (Expression 22) are all calculations

associated with a recursive subdivision. Each level of recursion also

requires memory to accommodate the local variables and pointers to

formal parameters passed to the recursive procedure (subroutine). For

small values of rsub, the number of recursion levels required is small,

even for response points very close to the element. For a constant

Jacobian element with rsub = 0.25, the maximum number of levels of

recursion for r = 0.01 and r = 0.001 is 2 and 3, respectively.

* With the concepts of the recursive procedure explained, the actual

accuracy of the recursive element is assessed in the next section.

NUMERICAL RESULTS

Consistent with the previous study of numerical integration error,

the accuracy of the recursive element is first demonstrated for a single

element in an infinite plane. Figure 12a presents the stress (li) in

the problem defined by Figure 5. Compare these results with those given

by Figures 6 through 8. The recursive element removes the singularity

V behavior previously noted at the Gauss points. Figure 12b gives the

* percent error in the integration. Notice that with rsub = 0.15, there

is a small amount of ripple present for r > 0.15, the region in which

subdivision is precluded. For r < 0.15, the element adaptively sub-

divides the element and the error is virtually eliminated. If rsub is

increased to 0.30, the error is further reduced but at the cost of

increased computational effort. If the radius (r) is simply computed

using only the minimum nodal radius, the results, shown in Figure 13,

are poor in the error region except near the nodes where the calculation

* method is valid. Between nodes, r is over estimated and thus the sub-

division criterion of Equation 19 is mistakenly satisfied.

%".%
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The recursive element is next demonstrated on two finite domain

problems. The classic problem of a hole in a finite plate is demon-

strated first. This test problem illustrates the accuracy that can be

attained with the recursive element near the boundary even with high

stress gradients present. The second test problem is a square plate

subjected to uniform tension. This theoretically simple problem

illustrates the difficulty the indirect BEM formulation has near

geometric discontinuities. Also a parameter study was conducted to

illustrate how the error field is affected by a collocation point

location near the corner.

Figure 14 defines the stress concentration problem and indicates

the region in which the internal response is calculated. Sixteen

quadratic elements were used to model the boundary of the plate: eight

for the square and eight for the circle. Discontinuous elements were

- used in the corners. The collocation points for the "corner nodes" only

were positioned at = 0.80. All other nodes that were common to two
elements were continuous (i.e., the collocation points were placed at

the geometric nodes).

In developing the system of equations, integrations over the singu-

larities were avoided. The collocation points were positioned at a

distance r = 0.O01AI from the element inside the domain 0. The mathe-

matical limit was thereby replaced by a physical limit since the

recursive element is designed to handle near-boundary responses. This

is not necessarily the most computationally efficient means of calculating

the integrations, but it is simple to implement and prevents further

A complication of the element integration procedure.

__ The calculation of internal responses is performed both with the

simple four-point quadrature method and with the recursive technique.

-- The response points are spaced at 0.06 in a square grid. Thus, the

distance of the response points from the circular hole varies around the

circumference. Figure 15 presents the stress (a i) near the hole using

four-point quadrature. The ripple effect near the hole is quite prevalent.

The same responses calculated with the recursive technique are given in

Figure 16. The oscillation of the response near the hole is removed;

thus, values in the high gradient regions of interest are accurately

21
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predicted. At a distance of 0.001 from the top of the hole the stress

concentration factor was 3.06. This compares well with theoretical

solutions for an infinite plate, 3.00, and the finite plate, 3.04

(Ref 16). Error with respect to the finite plate solution (at the exact

top of the hole) is 0.66%.

Figure 17 defines the uniaxial tension problem and indicates the

region in which the internal response is calculated. The problem was

modeled using both four and eight elements of uniform length. The

collocation positions near the corner were varied to study the effect on

the corner response. All collocation points were positioned within the

domain to develop the system of equations (as explained in the previous

test problem).

The results for the four- and eight-element models are shown in

Figures 18 and 19, respectively. The nonrecursive integration results

use the variable-order integration formula but are limited to a maximum

integration order of 16. As with the previous problem the recursive

element effectively eliminates the near-boundary error that is charac-

teristic of the usual implementation of Gauss quadrature. The computed

artificial boundary tractions for both models are sketched in Figure 20.

The improvement in modeling these artificial tractions with an increase

in the number of elements was apparent in the computed stress response

of Figures 18b and 19b. In the previous test problem, responses were

examined near a geometrically continuous portion of the boundary (the

hole) so no severe gradients occur in the corresponding artificial

tractions. However, in this test problem the responses approach the

corner that has geometry and traction discontinuities and gradients are

present in the corresponding artificial tractions. The error in the

corner reflects an inherent weakness of the indirect boundary element

formulation. The artificial boundary tractiotis become unbounded near

the corner and are difficult to represent with polynomial element shape

functions.

The positions of the corner collocation poiits and the element

middle nodes (eight-element model) can be varied Lo improve Lhe results

without significantly affecting the cost of the analysis. The effect of

shifting the middle nodes toward the corner would probably improve the

22
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results since the middle node collocation point would be in a position

to better model the gradiet. The middle node position was not considered

in this study. By similar reasoning, the position of the discontinuous

corner node's collocation point is expected to affect the results.

Figure 21 gives the error field in the domain for various positions of

the corner collocation points. The error field for this problem is

minimized when n 0.80. The error approaches zero near the colloca-

tion points where the boundary conditions are satisfied exactly. In

vaddition to the difficulty of modeling the artificial tractions, col-

location points positioned very close to the corner can result in

equations that approach linear dependence and are numerically ill-

conditioned.

CONCLUSIONS

A new recursive element subdivision algorithm is presented for the

boundary element method. The algorithm is introduced within the context

of the indirect boundary element method using an isoparametric quadratic

2 element; it is, however, generally applicable to the direct boundary

element method and other element formulations.

The motivation for this study and the resulting recursive algorithm

development is to improve the reliability of the boundary element method
by improving accuracy in the near-boundary region where error is normally

excessive. As a result of the algorithm, the analyst can choose element

size on the basis of geometry and anticipated response gradients alone

without concern for avoiding the error in the internal response in the
near-boundary region. This is similar to the idea behind the isopara-

metric element formulations in the finite element method, where fewer

elements are necessary to capture geometric description while at the

same time maintaining sufficient accuracy to model higher gradients.

In the indirect boundary element formulation the gradients of the

artificial boundary tractions must be considered when subdividing the

boundary. This is a practical limitation of the indirect method since

these gradients are more difficult to identify on a physical basis. As
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illustrated in this study, the artificial tractions can have very high

gradients near geometric and loading discontinuities. Concentrating

elements near the discontinuities is one way to capture these gradients.

The computational liability attending the new algorithm is the

recursive subdivision of a few elements, but this is at least partially

offset by a reduction of elements otherwise required in anticipation of

near-boundary response point calculations.

The recursive algorithm is, on the basis of preliminary implementa-

tion, believed to be relatively simple to implement compared to an

iterative approach that would also allow the same generality with curved

elements. It also lends itself to surface elements for three-dimensional

applications.

The adaptive quality of the recursive subdivision procedure poten-

tially enhances the use of the method in computer-aided design (CAD)

environments where the user may not have a complete understanding of the

numerical behavior of the boundary element method in the near-boundary

region. It would appear that it is also applicable to stress analysis

applications in plasticity and fracture mechanics where response accuracy

near the boundary is vitally important.

RECOMENDATIONS

One of the objectives in our research has been a combined finite

element and boundary element program that could reduce the high cost now

associated with nonlinear finite element programs. Further work is

0. needed for an effective coupling with nonlinear finite element programs.

A boundary element formulation that produces a symmetric set of equations

is essential. The concepts for an approach that produces a symmetric

stiffness matrix were outlined in this year's effort. This approach
0 would allow a much easier coupling of the BEM with existing FE programs.

The recursive algorithm in this year's effort adaptively integrated

the elements. The adaptive refinement of a combined FEM/BEM "mesh"

4 could drastically increase the efficiency of this class of problems.
The application of a recursive algorithm to adaptively refine a FEM/BEM

mesh should be investigated.
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The authors recommend that two areas receive further investigation:

(1) a stiffness coupling of the BEM with the FEM, and (2) adaptive

methods for combined boundary and finite elements.
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Figure 3. Two-dimensional elastostatics problem embedded in an
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Figure 4. Quadratic isoparametric boundary element.
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Figure 5. Uniform traction in an infinite plane.
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Figure 6. Four-point integration results for a single element
in an infinite plane (defined in Figure 5).
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(a) Critical point for element subdivision.
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(b) Initial element subdivision.

(c) Subdivision of Ara, the first level of recursion.

0 Figure 13. Recursive element subdivision.
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Figure 14. Hole in a plate problem.
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* Figure 17. Square plate in uniaxial tension problem.
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(b ~ error field with recursive integration.

Figure 18. A plate in uniaxial tension for a four-element model.
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Figure 19. A plate in uniaxial tension for an eight-element model.

41

30



1~+1

10/

-2 -+2

k 10I (a), P 1 (x-direction) 
traction.

-1 +0.2

-0.2

+0.2

-0.2 (b) P2 (y-direction) traction.

* Figure 20. Artificial boundary tractions for the plate in uniaxial
tension for the four- -- )and eight- (-)element

models.
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7 Fire Prevention and control systems)
8 Antenna technology 33 Site data and systems integration (energy resource data, energy
9 Structural analysis and design (including numerical and consumption data, integrating energy systems)

computer techniques) 34 ENVIRONMENTAL PROTECTION
10 Protective construction (including hardened shelters, 35 Solid waste management

shock and vibration studies) 36 Hazardous/toxic materials management
1 I Soil/rock mechanics 37 Wastewater management and sanitary engineering
13 REG 38 Oil pollution removal and recovery
14 Airfields and pavements 39 Air pollution
IS ADVANCED BASE AND AMPHIBIOUS FACILITIES 40 Noise abatement
16 Base facilities including shelters, power generation, water supplies 44 OCEAN ENGINEERING
17 Expedient roads/airfields/bridges 45 Seafloor soils and foundations
18 Amphibious operations (including breakwaters, wave forces) 46 Seafloor construction systems and operations (including
19 Over-the-Beach operations bincluding containerization, diver and manipulator tools)

materiel transfer. lighterage and cranesl 47 Undersea structures and materials
20 P0L storage, transfer and distribution 48 Anchors and moorings
24 POLAR ENGINEERING 49 Undersea power systems, electromechanical cables,
24 Same as Advanced Base and Amphibious Facilit as, and connectors

eicept limited to cold-region environments 50 Pressure vessel facilities
51 Physical environment (including site surveying)

* 52 Ocean-based concrete structures
53 Hyperbaric chambers

54 Undersea cable dynamics

* TYPES OF DOCUMENTS
as Techdasa Sheets 86 Technical Reports and Technical Notes 82 NCEL Guide & Updates [] None-

* - 83 Table of Consents & Index to TDS 91 Physical Security remove my name
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